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In our multisensory world, we often rely more on auditory information than on visual input for
temporal processing. One typical demonstration of this is that the rate of auditory flutter assimilates
the rate of concurrent visual flicker. To date, however, this auditory dominance effect has largely
been studied using regular auditory rhythms. It thus remains unclear whether irregular rhythms
would have a similar impact on visual temporal processing, what information is extracted from the
auditory sequence that comes to influence visual timing, and how the auditory and visual temporal
rates are integrated together in quantitative terms. We investigated these questions by assessing, and
modeling, the influence of a task-irrelevant auditory sequence on the type of “Ternus apparent
motion”: group motion versus element motion. The type of motion seen critically depends on
the time interval between the two Ternus display frames. We found that an irrelevant auditory
sequence preceding the Ternus display modulates the visual interval, making observers perceive
either more group motion or more element motion. This biasing effect manifests whether the
auditory sequence is regular or irregular, and it is based on a summary statistic extracted from the
sequential intervals: their geometric mean. However, the audiovisual interaction depends on
the discrepancy between the mean auditory and visual intervals: if it becomes too large, no
interaction occurs—which can be quantitatively described by a partial Bayesian integration model.
Overall, our findings reveal a cross-modal perceptual averaging principle that may underlie complex
audiovisual interactions in many everyday dynamic situations.
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Most stimuli and events in our everyday environments are
multisensory. It is thus no surprise that our brain often combines a
heard sound with a seen stimulus source, even if they are in
conflict. One typical such phenomenon, in a performance we
enjoy, is the ventriloquism effect (Chen & Vroomen, 2013; Occelli,
Bruns, Zampini, & Röder, 2012; Recanzone, 2009; Slutsky &
Recanzone, 2001): we perceive the ventriloquist’s voice as coming
from the mouth of a dummy as if it was the dummy that is

speaking. Of note in the present context, audiovisual integration
has not only been demonstrated in spatial localization, but also in
the temporal domain. In contrast to the dominance of vision in
audiovisual spatial perception, audition dominates temporal pro-
cessing, such as in rhythms and intervals. As an example, think of
how we tend to “auditorize” a conductor’s arm movements coor-
dinating a musical passage, or Morse code flashes emanating from
a naval ship. In fact, neuroscience evidence has revealed that
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information for time estimation is encoded in the primary auditory
cortex for both visual and auditory events (Kanai, Lloyd, Bueti, &
Walsh, 2011). This is consistent with the proposal that the percep-
tual system automatically abstracts temporal structure from rhyth-
mic visual sequences and represents this structure using an audi-
tory code (Guttman, Gilroy, & Blake, 2005).

Another compelling demonstration of how auditory rhythm in-
fluences visual tempo is known as the auditory driving effect
(Boltz, 2017; Gebhard & Mowbray, 1959; Knox, 1945; Shipley,
1964): the phenomenon that variations in auditory flutter rate may
noticeably influence the rate of perceived visual flicker. This
influence, though, is dependent on the disparity between the au-
ditory and visual rates (Recanzone, 2003). Quantitatively, this
influence has been described by a Bayesian model of audiovisual
integration (Roach, Heron, & McGraw, 2006), which assumes that
the brain takes into account prior knowledge about the discrepancy
between the auditory and visual rates in determining the degree of
audiovisual integration. Auditory driving is a robust effect that
generalizes across different types of tasks, including temporal
adjustment and production (Myers, Cotton, & Hilp, 1981) and
perceptual discrimination (Welch, DutionHurt, & Warren, 1986),
and it may even be seen in the effect of one single auditory interval
on a subsequent visual interval (Burr, Della Rocca, & Morrone,
2013).

It should be noted, however, that auditory driving has primarily
been investigated using regular rhythms, the implicit assumption
being that the mean auditory rate influences the mean visual rate.
On the contrary, studies on ensemble coding (Alvarez, 2011;
Ariely, 2001) suggest that perceptual averaging can be rapidly

accomplished even from a set of variant objects or events; for
example, we can quickly estimate the average size of apples in a
supermarket display, or the average tempo of a piece of music.
With regard to the present context, audiovisual integration, it
remains an open question how the average tempo in audition
quantitatively influences the temporal processing of visual
events—an issue that becomes prominent as the mechanisms un-
derlying perceptual averaging processes themselves are still a
matter of debate. There is evidence that the mental scales under-
lying the representation of magnitudes (e.g., visual numerosity and
temporal durations) are nonlinear rather than linear (Allan &
Gibbon, 1991; Dehaene, Izard, Spelke, & Pica, 2008; Nieder &
Miller, 2003). It has also been reported that, in temporal bisection
(i.e., comparing one interval with two reference intervals), the
subjective midpoint between one short and one long reference



distinct percepts of visual apparent motion: element or group
motion, where the type of apparent motion is mainly determined
by the visual interstimulus interval (ISIV) between the two display
frames (with other stimulus settings being fixed). Element motion
is typically observed with short ISIV (e.g., of 50 ms), and group
motion with long ISIV (e.g., of 230 ms; see Figure 1A and 1B).
When two beeps are presented in temporal proximity to, or syn-
chronously with, the two visual frames, the beeps can systemati-
cally bias the transition threshold between the two types of visual
apparent motion: either toward element motion (if the auditory
interval, ISIA, is shorter than the visual interval) or toward group
motion (if ISIA is longer than the visual interval; Shi et al., 2010).
Similar temporal ventriloquism effects have also been found with
other tasks, such as temporal order judgments (for a review, see
Chen & Vroomen, 2013). Here, we extended the Ternus temporal
ventriloquism paradigm by presenting a whole sequence of beeps
prior to the Ternus display frames, in addition to the two beeps
paired with Ternus frames (see Figure 1C; recall that previous
studies had presented just the latter two beeps) to examine the
influence of the temporal averaging of auditory intervals on visual
apparent motion.

Experiment 1 was designed, in the first instance, to demonstrate
an auditory driving effect using this new paradigm. In Experiment
2, we went on to examine whether temporal averaging with irreg-
ular auditory sequences would have a similar impact on visual
apparent motion. In Experiment 3, we manipulated the variability
of the auditory sequence to examine for (and quantify) influences
of the variability of the auditory intervals on visual apparent
motion. In Experiment 4, we further determined which types of
temporal averaging statistics, the AM or the GM of the auditory
intervals, influences visual Ternus apparent motion. And Experi-
ment 5 was designed to rule out a potential confound, namely, a
“recency” effect—with the last auditory interval dominating the
Ternus motion percept—in the cross-modal temporal averaging.
Finally, we aimed to identify the computational model that best
describes the cross-modal temporal interaction: mandatory full
Bayesian integration versus partial integration (Ernst & Banks,
2002; Roach et al., 2006).

Materials and Method

Participants

A total of 84 participants (21, 22, 16, 12, 12 in Experiments 1–5;
ages ranging from 18–33 years) took part in the main experiments.
All observers had normal or corrected-to-normal vision and re-
ported normal hearing. The experiments were performed in com-
pliance with the institutional guidelines set by the Academic
Affairs Committee of the Department of Psychology, Peking Uni-
versity (approved protocol of “#Perceptual averaging [2012-03-
01]”). All observers provided written informed consent according
to the institutional guidelines prior to participating and were paid
for their time on a basis of 20 CNY/hr.

The number of participants recruited for Experiments 1 and 2
was based on the effect size in our previous study of the temporal
Ternus ventriloquism effect (Shi et al., 2010), where the pairing of
auditory beeps with the visual Ternus displays yielded a Cohen’s
d greater than 1 for the modulation of the Ternus motion percept.
We thus used a conservative effect size of 0.25 and a power of 0.8

for the estimation and recruited more than the estimated sample
size (of 15 participants). Given that the effects we aimed to
examine turned out to be quite reliable, we used a standard sample
size of 12 participants in Experiments 4 and 5.

Apparatus and Stimuli

The experiments were conducted in a dimly lit (luminance: 0.09
cd/m2) cabin. Visual stimuli were presented in the central region of
a 22-in. CRT monitor (FD 225P, Qing Dao, China), with a screen
resolution of 1,024 � 768 pixels and a refresh rate of 100 Hz.
Viewing distance was 57 cm, maintained by using a chin rest.

A visual Ternus display consisted of two stimulus frames, each
containing two black disks (l0.24 cd/m2; disk diameter and sepa-
ration between disks: 1.6° and 3° of visual angle, respectively)
presented on a gray background (16.1 cd/m2). The two frames
shared one element location at the center of the monitor, while
containing two other elements located at horizontally opposite
positions relative to the center (see Figure 1). Each frame was
presented for 30 ms; the interstimulus interval (ISIV) between the
two frames was randomly selected from the range of 50–230 ms,
with a step size of 30 ms.

Mono sound beeps (1000 Hz, 65 dB, 30 ms) were generated and
delivered via an M-Audio card (Delta 1010, Bei Jing, China) to a
headset (Philips SHM1900, Bei Jing, China). To ensure accurate
timing of the auditory and visual stimuli, the duration of the visual
stimuli and the synchronization of the auditory and visual stimuli
were controlled via the monitor’s vertical synchronization pulses.
The experimental program was written with Matlab (Mathworks,
Natick, MA) and the Psychophysics Toolbox (Brainard, 1997).

Experimental Design

Practice. Prior to the formal experiment, participants were
familiarized with visual Ternus displays of either typical element
motion (with an ISIV of 50 ms) or typical group motion (ISIV of
260 ms) in a practice block. They were asked to discriminate the
two types of apparent motion by pressing the left or the right
mouse button, respectively. The mapping between response button
and type of motion was counterbalanced across participants. Dur-
ing practice, when a response was made that was inconsistent with
the typical motion percept, immediate feedback appeared on the
screen showing the typical response (i.e., element or group mo-
tion). The practice session continued until the participant reached
a conformity of 95%. All participants achieved this criterion within
120 trials, given that the two extreme ISIs used (50 and 260 ms,
respectively) gave rise to nonambiguous percepts of either element
motion or group motion.
Pretest. For each participant, the transition threshold between

element and group motion was determined in a pretest session. A





(audio-) visual Ternus apparent motion and for the formal exper-
iments, as well as fitting the corresponding cumulative Gaussian
psychometric functions. Based on the psychometric functions, we
could then estimate the discrimination variability of Ternus appar-
ent motion (i.e., �m) based on the standard deviation of the
cumulative Gaussian function. The parameters of the Bayesian
models (see Bayesian modeling section below) were estimated by
minimizing the prediction errors using the R optim function. Our
raw data, together with the source code of statistical analyses and
Bayesian modeling, are available at the github repository: https://
github.com/msenselab/temporal_averaging.

Results

Experiments 1 and 2: Both Regular and Irregular
Auditory Intervals Alter the Visual Motion Percept

We manipulated the intervals between successive beeps (i.e., the
ISIA prior to the Ternus display) to be either regular or irregular,
but with their AM being either 70 ms shorter, equal to, or 70 ms
longer than the transition threshold (measured in the pretest)

between element- and group-motion reports (for both regular and
irregular ISIA). Auditory sequences with a relatively long mean
auditory interval, as compared with a short interval, were found to
elicit more reports of group motion, as indicated by the smaller
PSEs (Figure 2), for both regular intervals, F(2, 40) � 12.22, p �
.001, �g

2 � 0.112, and irregular intervals, F(2, 42) � 8.25, p �
.001, �g

2 � 0.04. That is, the perceived visual interval (which
determines the ensuing motion percept) was assimilated by the
average of the preceding auditory intervals, regardless of whether
the auditory intervals were regular or irregular. Post hoc Bonfer-
roni comparison tests revealed that this assimilation effect was
mainly driven by the short auditory intervals in both experiments:
ps were 0.001, 0.00001, and 0.57 for the comparisons: 	70 versus
0 ms, 	70 versus 70 ms, and, respectively, 0 versus 70 ms for the
regular intervals; and 0.015, 0.0002, 0.77 for the comparisons of
the irregular intervals (Figure 2C and 2D).

The fact that a crossmodal assimilation effect was obtained even
with irregular auditory sequences suggests that the effect is un-
likely due to temporal expectation, or a general effect of auditory
entrainment (Jones, Moynihan, MacKenzie, & Puente, 2002;
Large & Jones, 1999). In addition, the assimilation effect observed
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is unlikely due to a recency effect. To examine for such an effect,
we split the trials into two categories according to the auditory
interval that just preceded the visual Ternus interval: short and
long preceding intervals with reference to the auditory mean



These results are interesting in two respects. First, according to
mandatory, full Bayesian integration (see the Bayesian Modeling
section below for details), auditory-interval variability should af-
fect the weights of the crossmodal temporal integration (Buus,
1999; Shi et al., 2013), with greater variance lessening the influ-
ence of the average auditory interval. Accordingly, the slopes of
the fitted lines in Figure 2 would be expected to be flatter under the
high compared with the low CV condition, yielding an interaction
between mean interval and CV. The fact that this interaction was
nonsignificant suggests that the ensemble mean of the auditory
intervals is not fully integrated with the visual interval (we will
return to this point in the Bayesian Modeling section). Second, the
downward shift of the PSEs in the low, compared with the high,
CV condition indicates that the perceived auditory mean interval
(that influences the audio-visual integration) is actually not the
AM that we manipulated. An alternative account of this shift may
derive from the fact that the auditory sequences with higher CV
have a lower GM than the sequences with low variance, that is: the
perceived ensemble mean is likely geometrically encoded. Exper-
iment 4 was designed to address this (potential) confound by
directly comparing the effects of ensemble coding based on the
GM versus the AM.

Experiment 4: Perceptual Averaging of Auditory
Intervals Assimilates the Visual Interval Toward the
GM Rather Than the AM

In Experiment 4, we compared three types of auditory sequence
in our audiovisual Ternus apparent motion paradigm: a baseline
sequence, an AriM sequence, and a GeoM sequence. The PSEs
were 136 (



Bayesian Modeling

To account for the above findings, we implemented, and com-
pared, two variants of Bayesian integration models: mandatory full
Bayesian integration and partial Bayesian integration. If the
ensemble-coded auditory-interval mean (A) and the audiovisual
Ternus display interval (M) are fully integrated according to the
maximum likelihood estimation (MLE) principle (Ernst & Banks,
2002), and both are normally distributed (e.g., fluctuating due to
internal Gaussian noise)—that is: A � N�Ia, �a�, M � N�Im, �m� —the
expected optimally integrated audio-visual interval, which yields min-
imum variability, can be predicted as follows:

Îfull � wIa � (1 � w)I
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This can be seen in Figure 7, which illustrates the dynamic changes
of the auditory weights across the various audio-visual interval
discrepancy conditions. All three experiments exhibit a similar
pattern: weights are at their peak when the visual interval and the
auditory mean intervals are close to each other. For example, the
peaks for the relative intervals of 0 ms (i.e., the auditory mean
intervals were set to the individual visual thresholds) are around
140 ms, close to the mean visual transition threshold (134.6 ms for
regular and 135.3 ms for irregular sequences, and 139.0 ms for low
and 144.8 ms for high variance). For relative intervals of 70 ms,
the peaks are shifted rightward; and for relative intervals of 	70



effect, that is, a dominant influence of the last interval prior to
the Ternus frames. Using a Bayesian integration approach, we
showed that the behavioral responses are best predicted by partial-
cue integration, rather than by full integration. Thus, our results
reveal the processing—in particular, the temporal averaging—to



eraging of the auditory sequence (regardless of its regularity) that
exerted a great influence on the visual interval.

Temporal Averaging and Geometric Encoding

The present results indicate that the GM well encapsulates the
summary statistics of the temporal structure hidden in a complex
multisensory stream (Hanson, Heron, & Whitaker, 2008; Heron,
Roach, Hanson, McGraw, & Whitaker, 2012). Previous work on
numerosity had already suggested that the mental scales underly-
ing the representation of visual numerosity and temporal magni-
tudes are best characterized as being nonlinear, as opposed to
linear, in nature (Dehaene, 2003; Dehaene et al., 2008; Nieder &
Miller, 2003, 2004; Rips, 2013). For example, adults from the
Mundurucu, an Amazonian indigenous tribe with a limited number
lexicon, map numerical quantities onto space in a logarithmic



the percept of the last auditory interval is assimilated by the
preceding intervals (Nakajima, ten Hoopen, Hilkhuysen, &
Sasaki, 1992; Nakajima et al., 2004), as well as in audiovisual
interval judgments when auditory and visual intervals are pre-
sented sequentially (Burr et al., 2013). The present study dem-
onstrated that such an audiovisual integration still occurs even
when participants are explicitly told to ignore the (task-
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