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In our multisensory world, we often rely more on auditory information than on visual input for
temporal processing. One typical demonstration of this is that the rate of auditory flutter assimilates
the rate of concurrent visual flicker. To date, however, this auditory dominance effect has largely
been studied using regular auditory rhythms. It thus remains unclear whether irregular rhythms
would have a similar impact on visual temporal processing, what information is extracted from the
auditory sequence that comes to influence visual timing, and how the auditory and visual temporal
rates are integrated together in quantitative terms. We investigated these questions by assessing, and
modeling, the influence of a task-irrelevant auditory sequence on the type of “Ternus apparent
motion”: group motion versus element motion. The type of motion seen critically depends on
the time interval between the two Ternus display frames. We found that an irrelevant auditory
sequence preceding the Ternus display modulates the visual interval, making observers perceive
either more group motion or more element motion. This biasing effect manifests whether the
auditory sequence is regular or irregular, and it is based on a summary statistic extracted from the
sequential intervals: their geometric mean. However, the audiovisual interaction depends on
the discrepancy between the mean auditory and visual intervals: if it becomes too large, no
interaction occurs—which can be quantitatively described by a partial Bayesian integration model.
Overall, our findings reveal a cross-modal perceptual averaging principle that may underlie complex
audiovisual interactions in many everyday dynamic situations.
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Most stimuli and events in our everyday environments are
multisensory. It is thus no surprise that our brain often combines a
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information for time estimation is encoded in the primary auditory
cortex for both visual and auditory events (



distinct percepts of visual apparent motion:elementor group
motion, where the type of apparent motion is mainly determined
by the visual interstimulus interval (ISIV) between the two display
frames (with other stimulus settings being fixed). Element motion
is typically observed with short ISIV (e.g., of 50 ms), and group
motion with long ISIV (e.g., of 230 ms; seeFigure 1A and 1B).
When two beeps are presented in temporal proximity to, or syn-
chronously with, the two visual frames, the beeps can systemati-



ms. There were 40 trials for each level of ISIV, counterbalanced
with left- and rightward apparent motion. The presentation order of
the trials was randomized for each participant. Participants per-
formed a total of 280 trials, divided into four blocks of 70 trials
each. After completing the pretest, the psychometric curve was
fitted to the proportions of group motion responses across the
seven intervals (see the Data Analysis and Modeling section). The
transition threshold, that is, the point of subjective equality (PSE)
at which the participant was equally likely to report the two motion
percepts, was calculated by estimating the ISI at the point on the
fitted curve that corresponded to 50% of group motion reports. The
just noticeable difference (JND), an indicator of the sensitivity of
apparent motion discrimination, was calculated as half of the
difference between the lower (25%) and upper (75%) bounds of
the thresholds from the psychometric curve.

Main experiments. In the main experiments, the procedure of
visual stimulus presentation was the same as in the pretest session,
except that prior to the occurrence of the two Ternus display
frames, an auditory sequence consisting of a variable number of
6–8 beeps was presented (see below for the details of the onset of
the Ternus display frames relative to that of the auditory se-
quence). As in the pretest, the onset of the two visual Ternus
frames (each presented for 30 ms) was accompanied by a (30-ms)
auditory beep (i.e., ISIV � ISIA). A trial began with the presen-
tation of a central fixation marker, randomly for 300 to 500 ms.
After a 600-ms blank interval, the auditory train and the visual
Ternus frames were presented (seeFigure 1c), followed sequen-
tially by a blank screen of 300 to 500 ms and a screen with a
question mark at the screen center prompting participants to indi-
cate the type of motion they had perceived: element versus group
motion (nonspeeded response). Participants were instructed to
focus on the visual task, ignoring the sounds. After the response,
the next trial started following a random intertrial interval of 500
to 700 ms.

In Experiment 1 (regular sound sequence), the audiovisual Ter-
nus frames was preceded by an auditory sequence of 6–8 beeps
with a constant interstimulus interval (ISIA), manipulated to be 70
ms shorter than, equal to, or 70 ms longer than the transition
threshold estimated in the pretest. The total auditory sequence
consisted of 8–10 beeps, including those accompanying the two
visual Ternus frames, with the latter being inserted mainly at the
sixth–seventh positions, and followed by 0–2 beeps (number se-
lected at random), to minimize expectations as to the onset of the
visual Ternus frames. Visual Ternus frames were presented on
75% of all trials (504 trials in total). The remaining 25% were
catch trials (168 trials) to break up anticipatory processes. All trials
were randomized and organized into 12 blocks, each block con-
taining 56 trials. The ISIV between the two visual Ternus frames
was randomly selected from one of the following seven intervals:
50, 80, 110, 140, 170, 200, and 230 ms.

In Experiment 2 (irregular sound sequence), the settings were
the same as in Experiment 1, except that the auditory trains were
irregular: the ISIA between adjacent beeps in the auditory train
(except the ISIA between the beeps accompanying the visual
Ternus frames) were varied� 20 ms uniformly and randomly
around (i.e., they were either 20 ms shorter or 20 ms longer than)
a given mean interval (three levels: 70 ms shorter than, equal to, or
70 ms longer than the individual transition threshold).

Experiment 3 introduced two levels of variability in the
auditory-interval sequences with 8–10 beeps: a low coefficient of
variance (CV, the standard deviation divided by the mean) of 0.1
and, respectively, a high CV of 0.3. For each CV condition, three
AM intervals were used: 50 ms shorter than, equal to, or 50 ms
longer than the estimated transition threshold. The intervals were
randomly generated from a normal distribution with a given mean
and CV. The number of the experimental trials was 1,008, and the
catch trials totaled 336. All trials were randomized and organized
into 24 blocks, each block containing 56 trials.

Experiment 4 used three types of auditory sequences, each
consisting of six intervals: (a) baseline auditory sequence: three
intervals, of 110, 140, and 170 ms, were repeated twice in random
order; in this baseline condition, the AM (AM� 140 ms) was
near-equal to the GM (GM� 138 ms); (b) AM-deviated (AriM)
sequence: six intervals were constructed from ISIAs of 70, 140,
and 280 ms, which were arranged randomly (AM� 163 ms�
GM �



(audio-) visual Ternus apparent motion and for the formal exper-
iments, as well as fitting the corresponding cumulative Gaussian
psychometric functions. Based on the psychometric functions, we
could then estimate the discrimination variability of Ternus appar-
ent motion (i.e., � m) based on the standard deviation of the
cumulative Gaussian function. The parameters of the Bayesian
models (see Bayesian modeling section below) were estimated by
minimizing the prediction errors using the R optim function. Our
raw data, together with the source code of statistical analyses and
Bayesian modeling, are available at the github repository:https://
github.com/msenselab/temporal_averaging.

Results

Experiments 1 and 2: Both Regular and Irregular
Auditory Intervals Alter the Visual Motion Percept

We manipulated the intervals between successive beeps (i.e., the
ISIA prior to the Ternus display) to be either regular or irregular,
but with their AM being either 70 ms shorter, equal to, or 70 ms
longer than the transition threshold (measured in the pretest)

between element- and group-motion reports (for both regular and
irregular ISIA). Auditory sequences with a relatively long mean
auditory interval, as compared with a short interval, were found to
elicit more reports of group motion, as indicated by the smaller
PSEs (Figure 2), for both regular intervals,F(2, 40) � 12.22,p �
.001, � g

2 � 0.112, and irregular intervals,F(2, 42) � 8.25, p �
.001, � g

2 � 0.04. That is, the perceived visual interval (which
determines the ensuing motion percept) was assimilated by the
average of the preceding auditory intervals, regardless of whether
the auditory intervals were regular or irregular. Post hoc Bonfer-
roni comparison tests revealed that this assimilation effect was
mainly driven by the short auditory intervals in both experiments:
ps were 0.001, 0.00001, and 0.57 for the comparisons:	 70 versus
0 ms,	 70 versus 70 ms, and, respectively, 0 versus 70 ms for the
regular intervals; and 0.015, 0.0002, 0.77 for the comparisons of
the irregular intervals (Figure 2Cand2D).

The fact that a crossmodal assimilation effect was obtained even
with irregular auditory sequences suggests that the effect is un-
likely due to temporal expectation, or a general effect of auditory
entrainment (Jones, Moynihan, MacKenzie, & Puente, 2002;
Large & Jones, 1999). In addition, the assimilation effect observed
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is unlikely due to a recency effect. To examine for such an effect,
we split the trials into two categories according to the auditory
interval that just preceded the visual Ternus interval: short and
long preceding intervals with reference to the auditory mean
interval. The length of the immediately preceding interval failed to
produce any significant modulation of apparent visual motion,F(1,
22) � 2.14,p � .15. An account in terms of a recency effect was
further ruled out by a dedicated control experiment that directly
fixed the last auditory interval (see Experiment 5 below).

Furthermore, in the regular condition, the mean JNDs (� SE) for
the three ISIV conditions (34.9 [� 3.1], 30.5 [� 3.4], and 28.4
[� 2.9] ms for the ISIV 70 ms shorter, equal to, and, respectively,
70 ms longer relative to the transition threshold) were larger than
the JND for the threshold (baseline) condition (18.8 [� 1.2] ms;
p � .001,p � .002, andp � .033 for the shorter, equal, and longer
conditions vs. the “threshold”), without differing among them-
selves (allps � 0.1). The same held true for the irregular condition:
JNDs of 31.8 (� 3.2), p � .001, 30.6 (� 2.3), p � .005, and 27.2
(� 2.2) ms compared with the baseline 18.6 (� 2.1) ms, without
differing among themselves (allps � 0.1). The worsened sensitiv-
ities in the three conditions with auditory beep trains suggest that
the assimilation effect observed here was not attributable to atten-
tional entrainment, as attentional entrainment would have been
expected to enhance the sensitivity.

Experiment 3: Variability of Auditory Intervals
Influences Visual Ternus Apparent Motion

According to quantitative models of multisensory integration
(Ernst & Di Luca, 2011; Shi, Church, & Meck, 2013), the strength
of the assimilation effect would be determined by the variability of
both the auditory intervals and the visual Ternus interval, assuming
that information is integrated from all intervals. According to
optimal full integration, high variance of the auditory sequence
would result in a low auditory weight in audiovisual integration,

leading to a weaker assimilation effect compared with low vari-
ance. To examine for effects of the variance of the auditory
intervals on visual Ternus apparent motion, we directly manipu-
lated the relative standard deviation of the auditory intervals while
fixing their AM. One key property of time perception is that it is
scalar (Church, Meck, & Gibbon, 1994; Gibbon, 1977), that is, the
estimation error increases linearly as the time interval increases,
approximately following Weber’s law. Given this, we used CVs,



These results are interesting in two respects. First, according to
mandatory, full Bayesian integration (see the Bayesian Modeling
section below for details), auditory-interval variability should af-
fect the weights of the crossmodal temporal integration (Buus,
1999; Shi et al., 2013), with greater variance lessening the influ-
ence of the average auditory interval. Accordingly, the slopes of
the fitted lines inFigure 2would be expected to be flatter under the
high compared with the low CV condition, yielding an interaction
between mean interval and CV. The fact that this interaction was
nonsignificant suggests that the ensemble mean of the auditory
intervals is not fully integrated with the visual interval (we will
return to this point in the Bayesian Modeling section). Second, the
downward shift of the PSEs in the low, compared with the high,
CV condition indicates that the perceived auditory mean interval
(that influences the audio-visual integration) is actually not the



Bayesian Modeling

To account for the above findings, we implemented, and com-
pared, two variants of Bayesian integration models: mandatory full
Bayesian integration and partial Bayesian integration. If the
ensemble-coded auditory-interval mean (A) and the audiovisual
Ternus display interval (M) are fully integrated according to the
maximum likelihood estimation (MLE) principle (Ernst & Banks,
2002), and both are normally distributed (e.g., fluctuating due to
internal Gaussian noise)—that is:A � N�Ia, � a�, M � N�Im, � m� —the
expected optimally integrated audio-visual interval, which yields min-
imum variability, can be predicted as follows:

Î full � wIa � (1 � w)Im, (1)

where w � �1�� a
2� ��1�� a

2 � 1�� m
2 � is the weight of the averaged

auditory interval, which is proportional to its reliability. Note that
full optimal integration is typically observed when the two “cues”
are close to each other, but it breaks down when their discrepancy
becomes too large (Körding et al., 2007; Parise, Spence, & Ernst,
2012; Roach et al., 2006
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This can be seen inFigure 7, which illustrates the dynamic changes
of the auditory weights across the various audio-visual interval
discrepancy conditions. All three experiments exhibit a similar
pattern: weights are at their peak when the visual interval and the
auditory mean intervals are close to each other. For example, the
peaks for the relative intervals of 0 ms (i.e., the auditory mean
intervals were set to the individual visual thresholds) are around
140 ms, close to the mean visual transition threshold (134.6 ms for
regular and 135.3 ms for irregular sequences, and 139.0 ms for low
and 144.8 ms for high variance). For relative intervals of 70 ms,
the peaks are shifted rightward; and for relative intervals of	 70
ms, they are shifted leftward.

Based on the responses predicted by the partial-integration
model, we further calculated the predicted PSEs.Figure 8
shows a linear relation between the observed and predicted
PSEs for all experiments. Linear regression revealed a signifi-
cant linear correlation, with a slope of 0.978 and an adjustedR2.
The full-integration model, by contrast, produced flat psycho-
metric curves for 6% of the individual conditions in Experi-
ments 1 and 2 (due to the weight of the mean auditory interval
approaching 1), which yielded unreliable estimates of the cor-
responding PSEs. This led to lower predictive power compared

with the partial-integration model, as evidenced by the BIC and
R2 scores (seeTable 1). Thus, taken together, the partial-
integration model can well explain the behavioral data that we
observed.

General Discussion

Using an audiovisual Ternus apparent motion paradigm, we



effect, that is, a dominant influence of the last interval prior to



eraging of the auditory sequence (regardless of its regularity) that
exerted a great influence on the visual interval.

Temporal Averaging and Geometric Encoding

The present results indicate that the GM well encapsulates the
summary statistics of the temporal structure hidden in a complex
multisensory stream (Hanson, Heron, & Whitaker, 2008; Heron,
Roach, Hanson, McGraw, & Whitaker, 2012). Previous work on
numerosity had already suggested that the mental scales underly-
ing the representation of visual numerosity and temporal magni-
tudes are best characterized as being nonlinear, as opposed to
linear, in nature (Dehaene, 2003; Dehaene et al., 2008; Nieder &
Miller, 2003, 2004; Rips, 2013). For example, adults from the
Mundurucu, an Amazonian indigenous tribe with a limited number
lexicon, map numerical quantities onto space in a logarithmic
fashion (Dehaene et al., 2008; but seeCicchini, Arrighi, Cecchetti,
Giusti, & Burr, 2012). A seminal study by Allan and Gibbon also
showed that temporal bisection coincided with the GM of the two
reference durations (Allan & Gibbon, 1991). Our findings reveal
that extraction of the GM also underlies temporal averaging—and
this might well be a principle shared by a broad range of mecha-
nisms coding magnitude in perception (Walsh, 2003).

Partial Integration in Cross-Modal Temporal
Processing

Research on multisensory integration has shown that the
“proximity” and “similarity” of the spatiotemporal structure of
multisensory signals—technically, their cross-correlation in
time (and space)—is critical for inferring an underlying com-



the percept of the last auditory interval is assimilated by the
preceding intervals (Nakajima, ten Hoopen, Hilkhuysen, &
Sasaki, 1992; Nakajima et al., 2004), as well as in audiovisual
interval judgments when auditory and visual intervals are pre-
sented sequentially (Burr et al., 2013). The present study dem-
onstrated that such an audiovisual integration still occurs even
when participants are explicitly told to ignore the (task-
irrelevant) auditory sequence, suggesting that processes of top-
down control cannot fully shield visual motion perception from
audiovisual temporal integration.

Conclusion

It has long been known that auditory flutter drives visual
flicker (Shipley, 1964)—a typical phenomenon of audiovisual
temporal interaction with regular auditory sequences. Here, in
five experiments, we demonstrated that irregular auditory se-
quences also capture temporal processing of subsequently pre-
sented visual (target) events, measured in terms of the biasing
of Ternus apparent motion. Importantly, it is the geometric
averaging of the auditory intervals that assimilates the visual
interval between the two visual Ternus display frames, thereby
influencing decisions on perceived visual motion. Further work
is required to examine whether the principles of geometric
averaging and partial cross-modal integration demonstrated
here (for an audiovisual dynamic perception scenario) general-
ize to other perceptual mechanisms underlying magnitude esti-
mation in multisensory integration.

Context of the Research

Perceptual averaging of sensory properties, such as the mean
number, size, and spatial layout of objects in a scene, has been
documented extensively in the visuospatial domain. It allows us
to capture our environment at a glance, in summary terms—
overcoming attentional and working memory capacity limita-
tions. This phenomenon prompted us to ask whether and, if so,
how processes of perceptual averaging may also be applied in
the temporal domain, specifically in (cross-modal) scenarios
involving multiple interacting sensory systems. Thus, we de-
signed a paradigm combining a task-irrelevant temporal se-
quence of auditory events with task-relevant Ternus apparent
motion—a phenomenon where we see two aligned dots either
move together (e.g., to the left or right) or only one dot
“jumping” across the other (apparently stationary) dot. What we
see (group vs. element motion) is critically influenced by the
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