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when u ¼ 1, the sound would be attenu-
ated by 100 dB, which resulted in silence.
The VAS ranged from 0 (not unpleasant at
all) to 10 (extremely unpleasant;Fig. 1B).
For each participant, we used a power
function to fit the relationships between
subjective unpleasant ratings and objective
noise intensity, and defined 10 different
levels of intensity from weakest to strong-
est with equal subjective unpleasantness
intervals (Fig. 1C). Specifically, the noise
stimuli ranged from the objective intensity
which was subjectively rated as 5 (level 1)
to 9.5 (level 10) with an incremental step of
0.5. Therefore, although participants’ sub-
jective unpleasantness feelings about the
noise stimuli may increase nonlinearly
(exponentially) with objective noise inten-
sity, their subjective unpleasantness feel-
ings about the 10 selected noise stimuli
would increase linearly from level 1 to level
10. The 10 selected noise stimuli would be
used in the following tasks. Notably, partic-
ipants did not know any information about
upcoming tasks before they finished the
noise rating task. Thus, their subjective
feelings about the noise stimuli would not
be biased by other irrelevant information
or motives. Noise stimuli were delivered by
AKG K271 MKII headphones, and con-
trolled by software Presentation (Neuro-
behavioral System Inc.).

Noise and visual stimuli association task
Since participants would virtually not hear
any noise stimuli during the interpersonal
helping task, we asked them to perform a
noise and visual stimuli association task to as-
sociate different levels of noise stimuli with
different visual cues before the helping task.
In this way, we could use the conditioned vis-
ual cues to denote different selected noise
stimuli in the interpersonal helping task. As
individuals’ subjective perceptions of unpleas-
antness for the same noise stimuli could vary
from person to person, we defined 10 levels of

Figure 1. Experimental design and behavioral results.A, The procedure of the experiment. Participants performed the tasks
in two sessions on two separate days. In session 1, participants performed the noise rating task, noise and visual stimuli associ-
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based on posterior probability (i.e., expected frequency) of each model
within the model space (Rigoux et al., 2014).

We also performed cross-validation prediction analyses and model
parameter recovery to validate the winning model. To assess the predic-
tive accuracy of the models, we divided all the trials into even-numbered
and odd-numbered trials to implement cross-validation prediction anal-
yses. Specifically, for each participant, we first used even-numbered trials
to estimate model parameters, and simulated 100 sets of response data
with the estimated model parameters for the odd-numbered trials. We
measured the predictive accuracy by calculating the proportion of simu-
lated decisions that correctly predicted the observed decision for each
trial. Then, we repeated this process by estimating parameters with odd-
numbered trials and calculating the predictive accuracy for even-num-
bered trials. We computed the overall predictive accuracy by averaging
the two predictive accuracy values.

In the fMRI experiment, participants went through different individ-
ual-specific sets of monetary cost amount–noise unpleasantness level
pairings. To confirm that the winning model could reliably estimate pa-
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Figure 2. Computational modeling results.A, Model comparison results. Model F1.2 (interdependent-and-nonlinear weight of recipients’ benefits model) outperforms than all the other
models in the RFX-BMS analysis. Model F1.2 has the highest exceedance probability (xp = 0.71), suggesting that the probability that model F1.2 is morelikely implemented than all the other
models is 71%.B, Correlation between BEES score (dispositional empathy) and log-transformedk in model F1.2 (other-regarding preferences).C, Bar plots show that cross-validation predic-
tion accuracies are significantly higher than chance level (i.e., 0.5) for all the 15 models of interest. Error bars indicate SEM.D, Scatter plots for correlations between estimated parameters with
model F1.2 in the two sessions.E, Model parameters recovered from simulated response data for each participant; 100 sets of response data were simulated with model F1.2, each participant’s
specific cost amount–noise unpleasantness level pairing choice set, and his/her own best-fitting parameters. Then, model parameters in model F1.2 were estimated with these 100 sets of
response data for each participant’s cost amount–noise unpleasantness level pairing choice set, and averaged across the 100 sets of simulated parameters. Scatter plots show the association
between the averaged simulated parameters (y-axis) and the estimated parameters fitted by observed behavioral data (x-axis) across all the participants. Dashed blue lines are the diagonal
lines. Each dot represents one participant;pppp, 0.001.
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SVbenefit. We observed that dACC [peak MNI: 9, 38, 19; T = 3.31,
k = 2,p(SVC-FWE) = 0.013, SVC] and rIPL [peak MNI: 54,�58,
49; T = 4.15, k = 20,p(SVC-FWE) = 0.001, SVC] showed signifi-
cant overlaps in neural valuation ofSVcost andSVbenefit (Fig. 3A,
B, right panels). Contrasts of“SVcost . SVbenefit” and“SVbenefit .
SVcost” did not reveal any region surviving a whole-brain cor-
rected threshold or SVC.

Neural substrates of decision utility and decision difficulty
underlying altruistic helping behaviors
In GLM 2, we identified regions encoding decision utility (Uchosen

- Uunchosen), which underlies the helping decision. Whole-brain
analysis revealed that activations in MPFC, left middle temporal
gyrus (MTG), left angular gyrus and superior occipital gyrus
(SOG) were positively associated with the decision utility, and
that activations in middle cingulate cortex/supplementary motor
area (MCC/SMA), left IFG, right DLPFC, and left angular gyrus
were negatively associated with decision utility (Fig. 4; Table 3).

Consistent with prior studies, the finding that the activation
in MPFC, especially VMPFC, was positively associated with de-
cision utility confirmed the role of VMPFC in representing SV
of decision (Levy and Glimcher, 2012; Bartra et al., 2013;
Clithero and Rangel, 2014). Given that smaller decision utility
increases decision difficulty, the findings that activations in
cognitive control-related regions, including MCC, IFC, and
DLPFC, were negatively associated with deci-
sion utility was also in line with previous stud-
ies suggesting that more extensive cognitive
resources are recruited in more difficult deci-
sions to resolve conflicts between choices with
smaller utility differences (Zaki et al., 2010;
Watanabe et al., 2014).

It is plausible that the regions identified in
GLM 1 were also associated with decision util-
ity or decision difficulty, but we did not observe
any significant effect of decision utility or deci-
sion difficulty on dACC, rIPL as well daINS/
IFG [all ps(FWE-SVC). 0.05]. Therefore, we
suggested that dACC, rIPL, and daINS/IFG
identified in the previous GLM analyses were
not involved in representing decision utility or
difficulty.

Valuation of others



INS, TPJ, and DLPFC) based on a 50-parcel whole-brain par-
cellation from Neurosynth database (http://neurovault.org/
collections/2099/). We combined vaINS with daINS and mINS
region in the parcellation template to form a mask covering the
whole INS. Only neural responses ofSVbenefit in right vaINS/mINS
[peak MNI: 45, 8,�5, p(SVC-FWE), 0.05] were correlated with
participants’ other-regarding preferences. Whole-brain analyses fur-
ther confirmed stronger signal ofSVbenefit in right vaINS/mINS
(peak MNI: 45, 8,�5, T =4.87, cluster size = 108) in participants
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Concerning the second analysis (i.e.,
correlation analysis), although the cor-
relation comparison suggested that the
difference between the correlation of
other-regarding preferences (i.e., log-



preferences are more closely related to disposi-
tional empathy for individuals whose positions
are closer to the diagonal line in the general
altruistic preference space than those who are
farther away to the diagonal line. We imple-
mented IS-RSA in the following procedure.
First, we generated a parameter RDM by calcu-
lating the Euclidean distance in this general



confirmed the functional dissociation between
different subregions in INS with multivariate
analyses, and indicated that neural activity pat-
terns ofSVcost in right DLPFC and activity pat-
terns ofSVbenefit in bilateral vaINS/mINS were
more similar between individuals who exhibited
similar general altruistic preference than those
who differed in general altruistic preference.

Discussion
In this study, we provide a neurocomputational
account of how benefactors weigh different
attributes (i.e., one’s own costs and others’ bene-
fits) to make altruistic decisions. Combining a
novel task with model-based fMRI analyses, we
clarify the algorithms of cost-benefit calculation
underlying altruistic behaviors, the neural imple-
mentations of such calculation, and the neural
basis of individual variations in altruistic prefer-
ences. Our findings implicate critical roles of a
wide range of brain regions in altruistic deci-
sion-making and address how personality traits
(i.e., dispositional empathy) and cognitive proc-
esses (i.e., cost-benefit calculation) interact to



welfare. The power exponent (i.e.,a) further differentiates indi-
viduals based on the magnitude of marginal utility of altruistic
behaviors. Such a differentiation provides us with a new way to
examine individuals’ altruistic preferences. One might argue that
biased perceptions of noise stimuli (Shepard, 1978) and mone-
tary magnitude (Namboodiri et al., 2014; Pardo-Vazquez et al.,
2019) will render the observed integration of nonlinearly trans-
formed attributes unreliable, and these confounding effects may
not be easily addressed by our current design. Nevertheless, our
findings highlight the importance of employing a nonlinear algo-
rithm to examine cost-benefit integration of different dimensions
of information underlying social decision-making.

Our model-based neuroimaging analyses further contribute
to our understandings of neurocomputational basis underlying
altruistic behaviors. First, our results suggest critical roles of
dACC and rIPL in representing self-interest motives and other-
regarding motives across different modalities. Second, univariate
mediation analyses and multivariate IS-RSA provide convergent
evidence for differentiating the roles of close but different subre-
gions in INS underlying the helping behavior. Third, the IS-RSA
further extend univariate analyses by revealing the role of
DLPFC in altruistic preference and reconciling conflicts regard-
ing the role of DLPFC in empathy-driven altruistic behaviors.
We discuss these aspects in more detail in following sections.

First, the engagement of dACC and rIPL in evaluating bene-
factors’ costs and recipients’ benefits largely replicate our previ-
ous findings that dorsal part of MPFC encodes self-interest
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