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intraparietal cortex (Gottlieb et al., 1998; Bisley and Goldberg,
2003, 2010), and V4 (Mazer and Gallant, 2003). More recently,
seminal findings by Sprague and Serences (2013) showed that
priority maps could be found in early retinotopic areas outside of
the frontoparietal regions, including primary visual cortex (V1).
However, little is known about the attention priority represen-
tation of natural stimuli because previous studies usually used
artificial stimuli composed of simple features. Although several
pioneering studies have shown that visual search in real-world
scenes is achieved by matching incoming visual input to a top-
down category-based attentional “template,” an internal object
representation with target-diagnostic features (Peelen et al., 2009;
Peelen and Kastner, 2011, 2014; Seidl et al., 2012), so far, there is no
neural evidence of a topographic profile of attention priority distri-
bution over natural stimuli.

The fundamental theme of identifying neural correlates of
attention priority map is to examine the link between the topo-
graphic neural representation of visual stimuli and task-related
behavior that reflects the spatial pattern of attention priority (i.e.,
behavioral relevance). However, this is complicated in the case of
natural stimuli. First, natural stimuli are highly complex and in-
vestigating their topographic representation in the visual cortex is
therefore challenging, especially with human brain imaging
techniques. Second, it is difficult to characterize the priority
map of natural images behaviorally using psychophysical mea-
surements (e.g., contrast sensitivity). Further complicating
the matters is that visual processing of natural stimuli is often
influenced by image configuration. A well known example
is the face inversion effect: face recognition performance is
severely impaired by the inversion of the image (Yin, 1969;
Rhodes and Tremewan, 1994). As a result, identifying the at-
tention priority representation of natural stimuli remains a
critical challenge because no studies have examined the behavioral
relevance of topographic representations of natural stimuli while
simultaneously taking the influence of image configuration into
consideration.

Here, we combined the use of eye tracking and fMRI to address
these issues. Face images were chosen as experimental stimuli be-
cause the spatial configurationof face components (i.e., eyes,mouth,
nose, etc.) is highly consistent across individual faces and the
impact of inverted image configuration is more pronounced in
faces than other objects (Yin, 1969), which allows effective recon-
struction of their topographic neural representation and easy ma-
nipulation of their image configuration. We characterized the
priority map of faces behaviorally as the differential spatial dis-
tribution of the first saccadic targets between intact and phase-
scrambled face images during a one-back image-matching task.
First saccade after stimulus onset is thought to be a relatively pure
signature of attentional guidance when processing complex stim-
uli (Awh et al., 2006; Einhäuser et al., 2008; Jiang et al., 2014). To
reconstruct the topographic representation of face images, we
used the voxelwise population receptive field (pRF)-mapping
technique (Dumoulin and Wandell, 2008). This technique allows
us to identify the corresponding retinotopic location of each
voxel in a given visual cortical area and thus enable the recon-
struction of the topographic stimulus representation from pop-
ulation activities in the reference frame of subjects’ visual field of
view (Kok and de Lange, 2014). To examine the behavioral rele-
vance of the reconstructed representation to the priority map, we
measured their correspondence using precision-recall curves
(Davis and Goadrich, 2006).

Materials and Methods
Participants. A total of 10 human subjects (5 male, 18–28 years old) were
paid to take part in the study. All of them participated in both the eye-
tracking and fMRI experiments. All subjects were naive to the purpose of
the study. They were right-handed, reported normal or corrected-to-
normal vision, and had no known neurological or visual disorders.
Written informed consent was collected before the experiments. Exper-
imental procedures were approved by the Human Subject Review Com-
mittee at Peking University.

Stimuli. Three types of visual stimuli were used in this study, including
upright faces, their inverted versions, and phase-scrambled versions (



fined using a standard phase-encoded method (Engel et al., 1997) in
which subjects viewed a rotating wedge and an expanding ring that cre-
ated traveling waves of neural activity in visual cortex. An independent
block-design run was performed to identify ROIs in the retinotopic areas
responding to the stimulus region when subjects fixated at the central
fixation point. The run contained eight stimulus blocks of 12 s inter-
leaved with eight blank blocks of 12 s. The stimulus was a full-contrast
flickering checkerboard of the same size as the face images. Voxelwise
pRF model parameters were estimated using the method described in
Dumoulin and Wandell (2008). Specifically, the hemodynamic response
function (HRF) was measured for each subject in a separate run contain-
ing 12 trials. In each trial, a full-contrast flickering checkered disk with a
radius of 10.94° was presented for 2 s, followed by a 30 s blank interval.
The HRF was estimated by fitting the convolution of a 6-parameter
double-gamma function with a 2 s boxcar function to the BOLD re-
sponse elicited by the disk. Three pRF mapping runs were performed in
which a flickering full-contrast checkered bar swept through the entire
visual field. The bar moved through two orientations (vertical and hori-
zontal) in two opposite directions within a given run, giving a total of
four different stimulus configurations. The order of the stimulus config-
urations was randomized. The mapped visual area subtended 24.8° hor-
izontally and 22.8° vertically. The bar was 2.76° in width and its length
was either 24.8° or 22.8° (Fig. 2A). Each bar swept through the visual area

in 16 steps within 51 s. The step size was 1.38°. Each pRF mapping run
lasted for 204 s. Throughout the session, subjects performed a color
discrimination task at fixation point to maintain fixation and control
attention.

The second scanning session consisted of four block design runs. In
each run, there were 12 stimulus blocks of 12 s (four blocks for each
stimulus type) interleaved with 12 blank blocks of 12 s. In a stimulus
block, 16 images appeared. Each image was presented for 500 ms, fol-
lowed by a 250 ms blank interval. Subjects performed the same one-back-
matching task as that in the eye-tracking experiment. Throughout the
scanning session, subjects were required to fixate at the central fixation
point and refrain from any possible eye movements.

fMRI data were processed using BrainVoyager QX (Brain Innova-





by the reconstruction weights and summated. The reconstructed repre-
sentation was therefore a linear sum of the 2D-Gaussian pRF profiles of
all voxels weighted by their stimulus-specific BOLD response as follows:
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on this model to the measured BOLD signal, the pRF position
and size parameters can be estimated for individual voxels, thus
providing a full characterization of the receptive field properties
of neuronal populations across the visual cortex.

Figure 2 shows the pRF estimation results. We fitted a line
relating pRF eccentricity with pRF size in V1 and V2/3 for the
whole, upper, and lower visual fields, respectively. Consistent with
previous findings (Dumoulin and Wandell, 2008), the pRF size
increased with the pRF eccentricity and the size increased faster in
V2/3 (slope k � 0.174, intercept b � 0.499) than in V1 (k � 0.105,
b � 0.430). In addition, the relationship between pRF size and
eccentricity was very similar across the upper (V1: k � 0.106, b �
0.520; V2/3: k � 0.191, b � 0.609) and lower visual fields (V1: k �
0.103, b � 0.441; V2/3: k � 0.166, b � 0.550) with no significant
difference (Wilcoxon signed-rank test: V1 slope: p � 0.31; V1
intercept: p � 0.94; V2/3 slope:TD
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Behavioral relevance of upright and inverted
face representations
In addition to their consistency with the differential first saccadic
target patterns, the reconstructed representations exhibited two
differences in behavioral relevance as a function of cortical region
and stimulus type. First, for the upright faces, the representation
in V2/3 was more topographically consistent with the first sacca-
dic target pattern than that in V1, whereas no such difference was





both primary and extrastriate visual cortices. We show that atten-
tion selection occurs, not only among multiple objects in a scene,
but also within a complex object by prioritizing diagnostic object
features. Moreover, we show that attention allocation is influ-
enced, not only by physical salience and task goal relevance, but
also by image configuration. Our findings contribute to filling the
long-existing blank of attention priority maps of natural stimuli
and make headway toward unraveling the mechanisms underly-
ing visual attention selection.

References
Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned sa-

lient region detection. In: Computer Vision and Pattern Recognition
(CVPR), 2009 IEEE Conference on, pp 1597–1604: IEEE.

Awh E, Armstrong KM, Moore T (2006) Visual and oculomotor selection:
links, causes and implications for spatial attention. Trends Cogn Sci 10:
124–130. CrossRef Medline

Baluch F, Itti L (2011) Mechanisms of top-down attention. Trends Neurosci
34:210–224. CrossRef Medline

Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal
area and spatial attention. Science 299:81–86. CrossRef Medline

Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the
parietal lobe. Annu Rev Neurosci 33:1–21. CrossRef Medline

Chen C, Zhang X, Zhou T, Wang Y, Fang F (2013) Neural representation of
the bottom-up saliency map of natural scenes in human primary visual
cortex. J Vis 13:233. CrossRef

Dakin SC, Watt RJ (2009) Biological “bar codes” in human faces. J Vis
9:2.1–10. CrossRef Medline

Davis J, Goadrich M (2006) The relationship between Precision-Recall and
ROC curves. In: Proceedings of the 23rd International Conference on
Machine Learning, pp 233–240: ACM.

de Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Krieges-
korte N, Rees G (2016) Perception and processing of faces in the human
brain is tuned to typical feature locations. J Neurosci 36:9289–9302.
CrossRef Medline

Desimone R, Duncan J (1995) Neural mechanisms of selective visual atten-
tion. Annu Rev Neurosci 18:193–222. CrossRef Medline

Dumoulin SO, Wandell BA (2008) Population receptive field estimates in
human visual cortex. Neuroimage 39:647–660. CrossRef Medline

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. San Diego:
CRC.

Einhäuser W, Spain M, Perona P (2008) Objects predict fixations better
than early saliency. J Vis 8:18.1–26. CrossRef Medline

Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in hu-
man visual cortex and the spatial precision of functional MRI. Cereb
Cortex 7:181–192. CrossRef Medline

Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map
for target selection. Trends Cogn Sci 10:382–390. CrossRef Medline

Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual
cortex. J Neurosci 3:1116–1133. Medline

Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual
salience in monkey parietal cortex. Nature 391:481–484. CrossRef Medline

Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE (2012) Prioritized
maps of space in human frontoparietal cortex. J Neurosci 32:17382–
17390. CrossRef Medline

http://dx.doi.org/10.1016/j.tics.2006.01.001
http://www.ncbi.nlm.nih.gov/pubmed/16469523
http://dx.doi.org/10.1016/j.tins.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21439656
http://dx.doi.org/10.1126/science.1077395
http://www.ncbi.nlm.nih.gov/pubmed/12511644
http://dx.doi.org/10.1146/annurev-neuro-060909-152823
http://www.ncbi.nlm.nih.gov/pubmed/20192813
http://dx.doi.org/10.1167/13.9.233
http://dx.doi.org/10.1167/9.4.2
http://www.ncbi.nlm.nih.gov/pubmed/19757911
http://dx.doi.org/10.1523/JNEUROSCI.4131-14.2016
http://www.ncbi.nlm.nih.gov/pubmed/27605606
http://dx.doi.org/10.1146/annurev.ne.18.030195.001205
http://www.ncbi.nlm.nih.gov/pubmed/7605061
http://dx.doi.org/10.1016/j.neuroimage.2007.09.034
http://www.ncbi.nlm.nih.gov/pubmed/17977024
http://dx.doi.org/10.1167/8.14.18
http://www.ncbi.nlm.nih.gov/pubmed/19146319
http://dx.doi.org/10.1093/cercor/7.2.181
http://www.ncbi.nlm.nih.gov/pubmed/9087826
http://dx.doi.org/10.1016/j.tics.2006.06.011
http://www.ncbi.nlm.nih.gov/pubmed/16843702
http://www.ncbi.nlm.nih.gov/pubmed/6188819
http://dx.doi.org/10.1038/35135
http://www.ncbi.nlm.nih.gov/pubmed/9461214
http://dx.doi.org/10.1523/JNEUROSCI.3810-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23197729
http://dx.doi.org/10.1073/pnas.0605678103
http://www.ncbi.nlm.nih.gov/pubmed/17075055
http://dx.doi.org/10.1037/a0035961
http://www.ncbi.nlm.nih.gov/pubmed/24512610
http://dx.doi.org/10.1152/jn.00105.2013
http://www.ncbi.nlm.nih.gov/pubmed/23615546
http://dx.doi.org/10.1016/j.cub.2014.05.042
http://www.ncbi.nlm.nih.gov/pubmed/24980501
http://dx.doi.org/10.1073/pnas.96.18.10530
http://www.ncbi.nlm.nih.gov/pubmed/10468643
http://dx.doi.org/10.1016/S1364-6613(00)01817-9
http://www.ncbi.nlm.nih.gov/pubmed/11849610
http://dx.doi.org/10.1523/JNEUROSCI.1780-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24133264
http://dx.doi.org/10.1016/S0896-6273(03)00764-5
http://www.ncbi.nlm.nih.gov/pubmed/14687556
http://dx.doi.org/10.1073/pnas.1101042108
http://www.ncbi.nlm.nih.gov/pubmed/21730192
http://dx.doi.org/10.1016/j.tics.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24630872
http://dx.doi.org/10.1038/nature08103
http://www.ncbi.nlm.nih.gov/pubmed/19506558
http://dx.doi.org/10.1073/pnas.1214269109
http://www.ncbi.nlm.nih.gov/pubmed/23150543
http://dx.doi.org/10.1177/0956797612471684
http://www.ncbi.nlm.nih.gov/pubmed/23740552
http://dx.doi.org/10.1167/15.13.12
http://www.ncbi.nlm.nih.gov/pubmed/26382003
http://dx.doi.org/10.1523/JNEUROSCI.5840-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23637176
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131039
http://www.ncbi.nlm.nih.gov/pubmed/15217345
http://dx.doi.org/10.1016/S0896-6273(03)00097-7
http://www.ncbi.nlm.nih.gov/pubmed/12628175
http://www.ncbi.nlm.nih.gov/pubmed/10024360
http://dx.doi.org/10.1080/13506289408402303
http://dx.doi.org/10.1002/cne.902160307
http://www.ncbi.nlm.nih.gov/pubmed/6306066
http://dx.doi.org/10.1523/JNEUROSCI.1693-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22915122
http://dx.doi.org/10.1016/j.cub.2004.02.028
http://www.ncbi.nlm.nih.gov/pubmed/15028214
http://dx.doi.org/10.1016/j.tics.2005.11.008
http://www.ncbi.nlm.nih.gov/pubmed/16318922
http://dx.doi.org/10.1093/cercor/bhj146
http://www.ncbi.nlm.nih.gov/pubmed/16514108
http://dx.doi.org/10.1038/nn.3574
http://www.ncbi.nlm.nih.gov/pubmed/24212672
http://dx.doi.org/10.1038/415165a
http://www.ncbi.nlm.nih.gov/pubmed/11805833
http://dx.doi.org/10.1037/h0027474
http://dx.doi.org/10.1016/j.cub.2005.10.072
http://www.ncbi.nlm.nih.gov/pubmed/16360687
http://dx.doi.org/10.1016/j.neuron.2011.10.035
http://www.ncbi.nlm.nih.gov/pubmed/22243756

	Attention Priority Map of Face Images in Human Early Visual Cortex
	Introduction
	Materials and Methods
	Results
	Discussion
	References


