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Abstract

Human saccade is a dynamic process of information pur-
suit. Based on the principle of information maximization,
we propose a computational model to simulate human sac-
cadic scanpaths on natural images. The model integrates
three related factors as driven forces to guide eye move-
ments sequentially — reference sensory responses, fovea-
periphery resolution discrepancy, and visual working mem-
ory. For each eye movement, we compute three multi-band
filter response maps as a coherent representation for the
three factors. The three filter response maps are combined
into multi-band residual filter response maps, on which we
compute residual perceptual information (RPI) at each lo-
cation. The RPI map is a dynamic saliency map varying
along with eye movements. The next fixation is selected
as the location with the maximal RPI value. On a nat-
ural image dataset, we compare the saccadic scanpaths
generated by the proposed model and several other visual
saliency-based models against human eye movement data.
Experimental results demonstrate that the proposed model
achieves the best prediction accuracy on both static fixation
locations and dynamic scanpaths.

1. Introduction

In human visual system, neurons representing different

retinal eccentricities have different spatial frequency tuning.

Foveal neurons have a smaller average receptive field size

and are better tuned to high spatial frequencies. They are ca-

pable of processing visual information at very high spatial

resolution. On the other hand, cortical neurons representing

peripheral vision have larger receptive fields and are more

sensitive to the lower range of spatial frequencies. They are

capable of processing information at low spatial resolution

[8]. So the information from a foveal image at one fixation

is very limited. Human saccadic eye movement is an impor-

tant mechanism to compensate for the loss of visual acuity

in the periphery and to actively pursue information around

the scene. In a highly dynamic and cluttered world, to ac-

quire visual information efficiently and rapidly, it is impor-

tant for our brain to decide not only where we should look

at, but also the sequence of fixations. Indeed, both of them

are essential for us to understand human saccadic behavior.

In the paper, we propose a computational model to sim-

ulate human saccadic scanpaths on natural images without

a particular task. Investigating this topic is not only helpful

in understanding the computational aspects of visual per-

ception, but also beneficial to many important applications

such as image and video compression, object detection, and

web-page design.

Proposed method The proposed saccade model in-



Figure 1. The proposed framework.

ter response maps of this foveal image are extracted. (iii)

Visual working memory retains perceptual information for





2.1.3 Visual working memory

Once an image location is visited by the fovea, informa-

tion at that fixation is acquired. Visual working memory

integrates the information across previous eye movements,

meanwhile, it loses the stored information at a certain rate.

This forgetting property will steer eyes moving back to pre-

viously visited salient spots when the “residual informa-

tion” becomes trivial, in other words, the information at the

previous fixations has been forgotten. In the following we

explain the mechanism of updating the filter responses in

the visual working memory.

Simulating the forgetting properties. In our model, we

multiply the current filter responses in working memory

with a constant forgetting factor ε (0 � ε � 1) to simu-

late its forgetting property. If ε = 1 , no forgetting effect;

if ε = 0 , it is memoryless. In Section 3.4, we compare

simulated scanpaths under different values of ε. The result

shows that the forgetting property is an important factor to

be modeled in simulating human saccades.

Updating visual working memory. Visual working

memory is the place where perceptual information from

current fixation and previous ones is dynamically updated.

In our model, the updating process of working memory

is implemented as taking the maximal filter response values

between the foveal image filter responses and the current

decayed filter responses in working memory at each loca-

tion. A Max operation is to simulate the transient activa-

tion in the caudal superior frontal sulcus and posterior pari-

etal cortex when updating the attentional focus [4]. This is

another key process that happens in working memory. To

be specific, let fv
k (x, y, t) and fw

k (x, y, t) represent the k-th

sub-band filter responses of a foveal image and visual work-

ing memory at time t and position (x, y) respectively. Then

the updating process is as follows:

fw
k (x, y, t) � max (fv

k (x, y, t), ε · fw
k (x, y, t Š 1)). (1)

Computing residual filter response maps. The updated

filter response maps in visual working memory will interact

with the reference sensory responses to predict the next fix-

ation (see Fig. 1). Psychological evidence shows that people

will shift attention when they move fixation to another point

[7]. Also it is known that attention shift-away is function-

ally equivalent to reducing stimulus strength [6]. Therefore

in our model, we subtract the updated filter responses in vi-

sual working memory from the reference sensory responses

to simulate the reduction of the stimulus strength. The

residual filter responses are computed as rk = |fo
k Š fw

k |,
where fo

k represents the k-th sub-band of the reference sen-

sory response map.

2.2. Measuring residual perceptual information

From the view of information theory, a residual filter re-

sponse map contains the perceptual discrepancy between

the information contained in an image and that stored in

brain after a series of fixations. This discrepancy is what

we aim to pursue in the following eye movements.

In our model, the residual perceptual information is mea-

sured by the Site Entropy Rate ate
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Figure 4. The distribution of saccade amplitudes.
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Figure 6. Comparison results between our model, [18] and [26]

using Hausdorff distance (a) and mean minimal distance (b) at dif-

ferent scanpath length k.

3.2.1 Distance of scanpaths

In order to quantitatively compare the stochastic and dy-

namic scanpaths of varied lengths, we propose to em-

ploy time-delay embedding, which has been used widely

in the study of dynamical systems [23]. Specifically, we

divide scanpaths into pieces of length k, e.g. Ck
m(t) =

(cm(t), · · · cm(t + k Š 1)) denotes a k-dimensional time-

delay embedding vector, starting at the t’th fixation gen-

erated by a model m. By varying the initial point t,
the collection of all such k-dimensional vectors gives rise

to the model space X = { Ck
m(t)} t � Rk. Similarly

Y = { Ck
h(τ )} τ denotes all the k-dimensional vectors in

eye movement data of the same image. In particular when

k = 2 , these vectors are discrete approximation of vector

fields. Comparison between such point cloud data X and Y
in Rk will reflect the dynamical similarities between models

and human.

For each model-generated k-dimensional vector x =
Ck

m(t) � X





Figure 9. Average mean minimal distances between the simulated scanpaths and eye tracking data with different � over the image dataset.

In the literature, some work uses edit distance to mea-

sure the difference between scanpaths [9]. We do not adopt

this measure for two reasons: (i) The method introduces

more free parameters, e.g. the cost for every operator. It is

rather subjective to tune these parameters to make the dis-

tance measure reasonable. (ii) We observe that although

there exist shared sections among scanpaths, the stochastic

nature of saccade introduces much variation among scan-

paths. This makes the design of operations and the operator

cost tuning particular hard.

In the future, we will extend the current model to ex-

plain individual difference in scanpaths and propose some

new evaluation criteria for such extension. Moreover, the

fixation duration is another important attribute of saccadic

behavior. It will also be considered in our future work.
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